Abstract

In the present study a primary culture system of chicken embryo brain neurons was used in the early period of chicken brain development from day 6 until day 8, which was shown to be a suitable model of neuritogenesis, cell migration and reaggregation. Dissociated chicken optic tectum cells from embryonic stage 31 were cultured on polylysine-coated dishes under serum-free conditions up to 3 days. Freshly dissociated neurons developed short processes, which contacted one another and formed fasciculated bundles. Cell somata migrated along the neurite bundles, similar to migrating neurons in vivo, forming three-dimensional tissue-like clusters. This system was used to study the possible functions of the disialoganglioside GD3 for these neuronal differentiation steps. GD3 represents the predominant ganglioside of embryonic neurons before neuritogenesis in vitro and in vivo. Its biosynthesis is followed during day 6 until day 8 of embryonic brain development. Incubation of dissociated neurons with the monoclonal antibody R-24, recognising the GD3 on the cell surface, led to a total blocking of neurite outgrowth. Accordingly, neither cell migration nor reaggregation could be found. These results indicate that the disialoganglioside GD3 plays a central role in neuronal differentiation and development in the embryonic chicken brain.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call