Abstract

We discuss how one can reconstruct the thermal history of the Universe by combining cosmic microwave background (CMB) measurements and gravitational wave (GW) direct detection experiments. Assuming various expansion eras to take place after the inflationary reheating and before Big-Bang Nucleosynthesis (BBN), we show how measurements of the GW spectrum can be used to break the degeneracies associated with CMB data, the latter being sensitive to the total amount of cosmic expansion only. In this context, we argue that the expected constraints from future CMB and GW experiments can probe a scenario in which there exists late-time entropy production in addition to the standard reheating. We show that, for some cases, combining data from future CMB and GW direct detection experiments allows the determination of the reheating temperature, the amount of entropy produced and the temperature at which the standard radiation era started.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call