Abstract

BackgroundIt is well known that in the rhizosphere soluble Fe sources available for plants are mainly represented by a mixture of complexes between the micronutrient and organic ligands such as carboxylates and phytosiderophores (PS) released by roots, as well as fractions of humified organic matter. The use by roots of these three natural Fe sources (Fe-citrate, Fe-PS and Fe complexed to water-extractable humic substances, Fe-WEHS) have been already studied at physiological level but the knowledge about the transcriptomic aspects is still lacking.ResultsThe 59Fe concentration recorded after 24 h in tissues of tomato Fe-deficient plants supplied with 59Fe complexed to WEHS reached values about 2 times higher than those measured in response to the supply with Fe-citrate and Fe-PS. However, after 1 h no differences among the three Fe-chelates were observed considering the 59Fe concentration and the root Fe(III) reduction activity. A large-scale transcriptional analysis of root tissue after 1 h of Fe supply showed that Fe-WEHS modulated only two transcripts leaving the transcriptome substantially identical to Fe-deficient plants. On the other hand, Fe-citrate and Fe-PS affected 728 and 408 transcripts, respectively, having 289 a similar transcriptional behaviour in response to both Fe sources.ConclusionsThe root transcriptional response to the Fe supply depends on the nature of chelating agents (WEHS, citrate and PS). The supply of Fe-citrate and Fe-PS showed not only a fast back regulation of molecular mechanisms modulated by Fe deficiency but also specific responses due to the uptake of the chelating molecule. Plants fed with Fe-WEHS did not show relevant changes in the root transcriptome with respect to the Fe-deficient plants, indicating that roots did not sense the restored cellular Fe accumulation.Electronic supplementary materialThe online version of this article (doi:10.1186/s12864-015-2331-5) contains supplementary material, which is available to authorized users.

Highlights

  • It is well known that in the rhizosphere soluble Fe sources available for plants are mainly represented by a mixture of complexes between the micronutrient and organic ligands such as carboxylates and phytosiderophores (PS) released by roots, as well as fractions of humified organic matter

  • In order to reproduce conditions closer to those where Fedeficiency symptoms in crops usually appear [38], the uptake medium was buffered at pH 7.5 and each Fe source was used at 1 μM final Fe concentration

  • Our results suggest that the root transcriptional response to Fe supply depends on the nature of the ligand (WEHS, citrate and PS)

Read more

Summary

Introduction

It is well known that in the rhizosphere soluble Fe sources available for plants are mainly represented by a mixture of complexes between the micronutrient and organic ligands such as carboxylates and phytosiderophores (PS) released by roots, as well as fractions of humified organic matter. The Strategy I (all higher plants except grasses) relies on the improvement of Fe solubility through the release of root exudates like protons (via an increase of activity of plasma membrane H+-ATPase) and organic acids and phenolic compounds followed by a reduction of Fe(III) to the more soluble Fe(II) by a Fe(III)chelate reductase (FRO) [2]. This reductive step is essential for the acquisition of micronutrient, since Fe(II) is taken up via the activity of a divalent cation transporter, IronRegulated Transporter (IRT) [1]. Strategy II is specific for grasses and is based on the biosynthesis and release of phytosiderophores (PS), which have a strong affinity for Fe(III), Zamboni et al BMC Genomics (2016) 17:35 and on the uptake of the Fe-PS complexes by a specific transporter, Yellow-Stripe (YS) [1]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.