Abstract

Mycoparasites are an assemblage of biotrophic and necrotrophic fungi that occur on plant pathogenic fungal hosts. Biotrophic mycoparasites are often overlooked in transcriptomic-based biocontrol studies. Sphaerodes mycoparasitica (S.m.) is a specific biotrophic mycoparasite of plant pathogenic Fusarium graminearum (F.g.), a devastating Fusarium head blight (FHB) disease in small-grain cereals. To understand the biotrophic mycoparasitism comprehensively, we performed Illumina RNA-Seq transcriptomic study on the fungus–fungus interaction in vitro. The aim is to identify the transcript-level mechanism related to the biotrophic S.m. mycoparasitism, particularly its ability to effectively control the F.g. 3-ADON chemotype. A shift in the transcriptomic profile of the mycoparasite was triggered in response to its interaction with F.g. during recognition (1.5 days) and colonization (3.5 days) steps. RNA-Seq analysis revealed ~ 30% of annotated transcripts with "function unknown". Further, 14 differentially expressed genes functionally linked to the biotrophic mycoparasitism were validated by quantitative real-time PCR (qPCR). The gene expression patterns of the filamentous haemagglutinin/adhesin/attachment factor as well as cell wall-degrading glucanases and chitinases were upregulated by host interaction. Besides, mycoparasitism-associated antioxidant resistance genes encoding ATP-binding cassette (ABC) transporter(s) and glutathione synthetase(s) were upregulated. However, the thioredoxin reductase was downregulated which infers that this antioxidant gene can be used as a resistance marker to assess S.m. antifungal and antimycotoxigenic activities. The interactive transcriptome of S. mycoparasitica provides new insights into specific mycoparasitism and will contribute to future research in controlling FHB.Graphic

Highlights

  • Introduction Advances inDNA/RNA-sequencing technologies have provided an opportunity to accelerate research on the beneficial microbiome and pathobiota of plants

  • In this study, we conducted transcriptomic analyses of the early hyphal–hyphal interaction of Sphaerodes mycoparasitica to get to know the biotrophic mycoparasitism against Fusarium graminearum

  • De novo assembly from RNA-Seq data and functional annotation of transcriptome were performed, while quantitative real-time PCR (qPCR) was used to confirm the reliability of the sequencing results

Read more

Summary

Introduction

Introduction Advances inDNA/RNA-sequencing technologies have provided an opportunity to accelerate research on the beneficial microbiome and pathobiota of plants. Fusarium graminearum [teleomorph, Gibberella zeae (Schwabe) Petch] (F.g.) is the principal causal agent of Fusarium head blight (FHB or scab) disease, resulting in severe losses of small cereal crop yields worldwide (Karlsson et al 2021; Powell and Vujanovic 2021). Despite the economic importance of F.g. 3-ADON, effective FHB control and DON detoxification methods are yet to be discovered. Emerging new biocontrol approaches are expected to control diseases and improve breeding programs to increase crop yields and generate more microbe-optimized crops (Trivedi et al 2017; Vujanovic 2021). Biocontrol is seen as a promising tool to reduce the use of synthetic chemicals in staple crops while controlling FHB (Legrand et al 2017). The integrative research based on the mycoparasite-driven control of FHB and associated toxins could generate new insights. The suppression of the early growth and reproduction of F.g. 3-ADON is a key focus

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call