Abstract

Between 67 and ∼40 Ma ago a northwest-southeast-trending fracture system over 8000 km long split the Pacific plate and accumulated at least 1700 km of dextral offset between the east and west portions. This system, here named the Emperor fracture zone (EFZ) system, consisted of several segments, one along the present trace of the Emperor trough and another along the Line Islands, joined by short spreading ridges. The EFZ terminated at its northern end against the Kula-Pacific ridge, and at its southern end in a ridge-transform system, called the Emperor spreading system, which extended to the west, north of Australia. The finite angular velocity vector describing the relative motion between the East and West Pacific plates is ∼0.6°/Ma about a pole at 36°N, 70°W. This vector, added to the known Early Tertiary motion of the Pacific plate with respect to the global hotspot reference frame, accounts in large part for the NNW trend of the Emperor seamount chain relative to the WNW Hawaiian trend, without violation of the integrity of the Antarctic plate. The Meiji-Emperor and Emperor-Hawaiian bends date, respectively, the initiation (∼67 Ma ago) and cessation (∼40 Ma ago) of seafloor spreading on the Emperor spreading system. The postulated Early Tertiary relative motion along the EFZ between the East and West Pacific plates explains (1) the present misalignment of the two sets of magnetic bights of the Pacific, (2) the abrupt truncation of eastern Pacific bathymetric lineaments against the Emperor trough and Line Islands, (3) the contrast in paleolatitude between the eastern and western Pacific as indicated by paleomagnetic and sedimentologic studies, and (4) the anomalous gravity signature of the central Hawaiian ridge that indicates that the ridge loaded thin hot lithosphere.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call