Abstract

The branch-and-bound optimization algorithm for mixed-integer model predictive control (MI-MPC) solves several convex quadratic program relaxations, but often the solutions are discarded based on already known integer feasible solutions. This letter presents a projection and early termination strategy for infeasible interior point methods to reduce the computational effort of finding a globally optimal solution for MI-MPC. The method is shown to be also effective for infeasibility detection of the convex relaxations. We present numerical simulation results with a reduction of the total number of solver iterations by 42% for an MI-MPC example of decision making for automated driving with obstacle avoidance constraints.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.