Abstract

A minor subpopulation of adult murine thymocytes (less than 5%) that is Lyt-2-, L3T4-, and expresses low levels of Ly-1 (designated dLy-1 [dull] thymocytes) has been identified, isolated, and characterized. This study assesses the differentiation potential of dLy-1 thymocytes in the thymus in vivo. Using multiparameter flow cytometry, radiation chimeras of C57BL/6 mice congenic at the Ly-1 or Ly-5 locus, and allelic markers to discriminate host and donor, we showed that transferred dLy-1 cells were able to generate thymocytes expressing both cortical and medullary phenotypes in a sequential manner. The proportion of donor-derived thymocytes obtained was directly related to the number of dLy-1 thymocytes transferred. Transfer of purified Lyt-2+ or Lyt-2+ + L3T4+ thymocytes, which constitute greater than 94% of total thymocytes, failed to generate any donor-derived thymocytes in irradiated recipients. Transfer of bone marrow (BM) cells produced the same sequential pattern of differentiation as that produced by dLy-1 cells, but was delayed by 4-5 d. Transferred dLy-1 thymocytes exhibited a limited capacity for self-renewal, and resulted in a single wave of differentiation in irradiated hosts. Thus, thymic repopulation by donor-derived cells after transfer of dLy-1 thymocytes was transient, while repopulation by BM was permanent. These findings suggest that the isolated dLy-1 thymocytes described herein are precursor thymocytes that represent a very early stage in intrathymic development.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.