Abstract

BackgroundLimited evidence exists regarding the association between early symptom change and later outcomes of cognitive behavioral therapy (CBT). This study aimed to apply machine learning algorithms to predict continuous treatment outcomes based on pre-treatment predictors and early symptom changes and to uncover whether additional variance could be explained compared to regression methods. Additionally, the study examined early subscale symptom changes to determine the most significant predictors of treatment outcome. MethodsWe investigated CBT outcomes in a large naturalistic dataset (N = 1975 depression patients). The sociodemographic profile, pre-treatment predictors, and early symptom change, including total and subscale scores were used to predict the Symptom Questionnaire (SQ)48 score at the 10th session as a continuous outcome. Different machine learners were compared to linear regression. ResultsEarly symptom change and baseline symptom score were the only significant predictors. Models with early symptom change explained 22.0 % to 23.3 % more variance than those without early symptom change. Specifically, the baseline total symptom score, and the early symptom score changes of the subscales pertaining to depression and anxiety were the top three predictors of treatment outcome. LimitationExcluded patients with missing treatment outcomes had slightly higher symptom scores at baseline, indicating possible selection bias. ConclusionEarly symptom change improved the prediction of treatment outcomes. The prediction performance achieved is far from clinical relevance: the best learner could only explain 51.2 % of the variance in outcomes. Compared to linear regression, more sophisticated preprocessing and learning methods did not substantially improve performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.