Abstract

Recent observations by the James Webb Space Telescope (JWST) discovered unexpectedly abundant luminous galaxies at high redshift, posing possibly a severe challenge to popular galaxy formation models. We study early structure formation in a cosmological model with a blue, tilted power spectrum (BTPS) given by P(k)∝kms with m s > 1 at small length scales. We run a set of cosmological N-body simulations and derive the abundance of dark matter halos and galaxies under simplified assumptions on star formation efficiency. The enhanced small-scale power allows rapid nonlinear structure formation at z > 7, and galaxies with stellar mass exceeding 1010 M ⊙ can be formed by z = 9. Because of frequent mergers, the structure of galaxies and galaxy groups appears clumpy. The BTPS model reproduces the observed stellar mass density at z = 7–9, and thus eases the claimed tension between galaxy formation theory and recent JWST observations. The large-scale structure of the present-day Universe is largely unaffected by the modification of the small-scale power spectrum. We conduct a systematic study by varying the slope of the small-scale power spectrum to derive constraints on the BTPS model from a set of observations of high-redshift galaxies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.