Abstract

To determine the early effects of oestrogen on the ultrastructure of the pudendal nerve and distal nerve fascicles near the external urethra sphincter (EUS) after a pudendal nerve crush injury. The pudendal nerve is one of the pelvic floor tissues injured during vaginal delivery, possibly contributing to the development of stress urinary incontinence (SUI) in women, the symptoms of which often do not appear until menopause, implicating hormonal factors. Twenty-seven virgin female Sprague-Dawley rats were anaesthetized and underwent ovariectomy. Three days later, they had one of four procedures: bilateral pudendal nerve crush plus implant of a subcutaneous oestrogen-containing capsule (NC+E); nerve crush plus implant of a sham saline-containing capsule (NC+S); no nerve crush with an oestrogen capsule; or no nerve crush with a sham capsule. After 2 weeks the pudendal nerves and urethral tissues were prepared for light and electron microscopy. The number of axons, myelin figures and endoneurial nuclei in the pudendal nerve segment distal to the lesion were counted. Nerve fascicles near the EUS were also counted and categorized as normal or showing signs of degeneration and/or regeneration. The location of each nerve fascicle was specified as either ventral or dorsal. As there were no significant differences between the two control groups they were combined to form a single control group. In the distal pudendal nerve there were significantly fewer myelinated axons and large myelinated axons in the NC+E and NC+S groups than in the control group. There were three times as many large unmyelinated axons in the NC+E group than in either the NC+S or control groups (P < 0.05). There were only half as many nerve fascicles near the ventral side of the EUS in the NC+S group than in both the control and NC+E groups (P < 0.05). Oestrogen appears to affect large unmyelinated axons in both the injured pudendal nerve and at the denervated EUS target. After pudendal nerve crush, nerve fascicles with evidence of degeneration or regeneration near the EUS appear to be spared with oestrogen treatment, particularly in the ventral region. These observations may reflect the early stages of a neuroregenerative effect of oestrogen. Additional studies are needed to confirm these results at later periods and with functional methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.