Abstract

In order to study the influence of different factors on the early strength of the cold recycled emulsified asphalt mixtures, 16 different types of cold recycled mixtures were designed and produced, which were combined with different cement content, water content, and cement-water ratio. The indirect tensile strength (IDT), compressive strength (UCS), tensile strength at 15°C (TS), and indirect tensile strength ratio (ITSR) tests were used to test the early strength of the cold recycled mixture. The variance analysis method was utilized to analyze the influence of the single factor on the early strength of the cold recycled mixture. The results show that appropriate cement-water ratio content can effectively improve the early strength of cold recycled mixtures. According to the Spearman correlation coefficient and comparison of each evaluation indicator, IDT and ITSR are significantly affected by various factors, and the results are relatively stable and well-differentiated, which is recommended as indicators of early strength evaluation. Cement-water ratio is recommended as the main control factor to control the early strength of the cold recycled emulsified asphalt mixtures. The optimal cement-water ratio ranges from 0.6 to 1.0, while the cement content is controlled from 1.2% to 1.5% and the water content from 3.8% to 4.3%. This study is of great significance for promoting the design of emulsified asphalt cold regenerative mixture with cement-water ratio and improving and accelerating its early strength development.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.