Abstract

Inhibition of phosphatidylinositol 3-kinase (PI3-kinase) has been reported to block cardiomyocyte differentiation. However, at which stage PI3-kinase plays this important role and what its molecular targets are remain unknown. To answer these questions, we induced cardiomyocyte differentiation of P19CL6 mouse embryonal carcinoma cells and investigated the activation of PI3-kinase by analyzing phospho-Akt. We also treated P19CL6 cells with the PI3-kinase-specific inhibitor LY294002 either continuously or at various time points and monitored the expression of cardiac contractile proteins and transcription factors. Most cells differentiated into sarcomeric myosin heavy chain (MHC)-positive cardiomyocytes on day 16 after induction. An increase in phospho-Akt was observed after induction and was maintained throughout the differentiation. LY294002 treatment restricted to the phase from days 0 to 4 was sufficient to inhibit cardiomyocyte differentiation in a dose-dependent manner. In contrast, LY294002 treatment either from days 4 to 8 or from days 8 to 12 did not cause significant changes in sarcomeric MHC expression. LY294002 treatment from days 0 to 4 also suppressed Csx/Nkx-2.5 and GATA-4 expression. These results demonstrate that PI3-kinase becomes activated and plays a pivotal role at a very early stage of cardiomyocyte differentiation, possibly by modulating the expression of the cardiac transcription factors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.