Abstract

The growth of ZnS nanoparticles by precipitation from supersaturated aqueous solution is studied by stopped-flow UV absorption spectroscopy. The average size, size distribution, and concentration of the particles are monitored within the sub-second time regime with a resolution of 1.28 ms. Particle growth at these early stages is governed by pronounced ripening. The UV absorption data strongly suggest that growth occurs by preferential adsorption of HS- anions relative to Zn(2+) or ZnOH(+) cations. Correspondingly, the initial sulfide concentration has a much more pronounced influence on the growth kinetics than the initial zinc concentration. These findings are verified by zeta-potential measurements which confirm that the particle surfaces are negatively charged under near-neutral pH conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.