Abstract

Barium titanate (BaTiO3) may be used in a number of thin-film applications in electronic and optoelectronic devices. For these devices the formation of epitactic films of the correct stoichiometry and phase is essential. In particular, the tetragonal form of BaTiO3, which is stable at room temperature, exhibits ferro-, pyro- and piezoelectric properties. It is desirable to form films of the tetragonal phase directly and thus to avoid formation of either amorphous or polycrystalline material or to form material of the non-ferroelectric cubic phase. Recently two techniques, pulsed-laser ablation and reactive evaporation, have been used to form BaTiO3 thin-films. In the present study BaTiO3 thin-films have been formed using the pulsed-laser ablation technique. Pulsed-laser ablation is now widely used to produce thin-films of the high temperature superconductors and has many advantages over other techniques, in particular the formation of films which maintain the stoichiometry of the target material and by controlling the processing conditions the formation of films having defined crystalline phases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.