Abstract

The earliest stages of sensorimotor learning involve learning the correspondence between movements and sensory results-a sensorimotor map. The present exploratory study investigated the neurochemical underpinnings of map acquisition by monitoring 25 participants as they acquired a new association between movements and sounds. Functional magnetic resonance spectroscopy was used to measure neurochemical concentrations in the left primary motor cortex during learning. Resting-state functional magnetic resonance imaging data were also collected before and after training to assess learning-related changes in functional connectivity. There were monotonic increases in γ-aminobutyric acid (GABA) and decreases in glucose during training, which extended into the subsequent rest period and, importantly, in the case of GABA correlated with the amount of learning: participants who showed greater behavioral learning showed greater GABA increase. The GABA change was furthermore correlated with changes in functional connectivity between the primary motor cortex and a cluster of voxels in the right intraparietal sulcus: greater increases in GABA were associated with greater strengthening of connectivity. Transiently, there were increases in lactate and reductions in aspartate, which returned to baseline at the end of training, but only lactate showed a statistical trend to correlate with the amount of learning. In summary, during the earliest stages of sensorimotor learning, GABA levels are linked on a subject-level basis to both behavioral learning and a strengthening of functional connections that persists beyond the training period. The findings are consistent with the idea that GABA-mediated inhibition is linked to maintenance of newly learned information.NEW & NOTEWORTHY Learning the mapping between movements and their sensory effects is a necessary step in the early stages of sensorimotor learning. There is evidence showing which brain areas are involved in early motor learning, but their role remains uncertain. Here, we show that GABA, a neurotransmitter linked to inhibitory processing, rises during and after learning and is involved in ongoing changes in resting-state networks.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call