Abstract

The mechanism of mechanically induced self-propagating reaction (MSR) of titanium with graphite to produce TiC during reactive ball milling of elemental powders was investigated using high resolution electron microscopy, and Raman and X-ray photoelectron spectroscopies. Prior to the exothermic ignition, off-stoichiometric Ti(1+x)C(1−x) nuclei are formed by reaction at the interface between the severely deformed Ti particles and graphite milling debris. After ignition, both rapid growth of existing nuclei, and nucleation and growth of additional off-stoichiometric Ti(1+x)C(1−x) occurs. Local product morphologies after the ignition varied, depending local restrictions on the rate of diffusion of carbon into the TiC as it grows.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.