Abstract

Characteristics of the developing recirculation region behind a tapered trapezoidal cylinder and its interaction with the separating shear layer from the leading edges were studied numerically for an impulsively started laminar flow. An unsteady stream function–vorticity formulation was used. The Reynolds numbers considered range from 25 to 1000. Pressure contours, surface pressure coefficient, wake length and drag coefficient were studied through the streamline flow field. Main flow and subflow regimes were identified by an analysis of the evolution of the flow characteristics. It was found that typically, for a given trapezoidal cylinder, flow starts with no separation. As time advances, the symmetrical standing zone of recirculation develops aft of the trapezoidal cylinder. The rate of growth in width, length and structure of the aft end eddies depends on the Reynolds number. In time, separated flow from the leading edges of the trapezoidal cylinder also develops and forms growing separation bubbles on the upper and lower inclined surfaces of the trapezoidal cylinder. As time advances, the separation bubbles on the upper and lower inclined surfaces of the cylinder grow towards the downstream regions and eventually merge with the swelling symmetrical eddies aft of the cylinder. This merging of the flows creates a complex flow regime with a disturbed tertiary flow zone near the merging junction. Eventually, depending on the Reynolds number and the tapered angle of the trapezoidal cylinder, the flow develops into a specific category of symmetrical standing recirculatory flow with its own distinct characteristics. Comparisons with the available results of other investigators showed very good agreement. © 1998 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.