Abstract

The early-stage roughening of the interface between thin deuterated poly(methyl methacrylate) (d-PMMA) layers on thick polystyrene (PS) films was studied as a function of the temperature using real-time specular neutron reflectivity. By measuring the growth of the interface roughness as a precursor of the dewetting, the characteristic time constant of the early stages of the process was studied as a function of the temperature approaching the glass transition temperature (T(g)) of the two polymers from above and compared with the prediction of the growth of the interface by the spinodal process. Both solid and liquid regimes were probed, in which the viscosity of the thin film or the substrate dominates respectively. The characteristic growth time of the process also depends on the upper film thickness to a power of 5 or 6 in the solid or liquid regimes, respectively, as predicted by the theory of spinodal dewetting.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.