Abstract
In this study, we investigated nanodroplet spreading at the early stage after the impact using molecular dynamics simulations by changing the magnitude of the intermolecular force between the liquid and wall molecules. We showed that the droplet deformation after the impact greatly depends on the intermolecular force. The temporal evolution of the spreading diameters was measured by the cylindrical control volume for several molecular layers in the vicinity of the wall. At the early stage of the nanodroplet impact, the normalized spreading radius of the droplet is proportional to the square root of the normalized time, tˆ. This result is understood by the geometrical consideration presented by Rioboo et al. [“Time evolution of liquid drop impact onto solid, dry surfaces,” Exp. Fluids 33, 112–124 (2002)]. In addition, we found that as the intermolecular force between the liquid and wall becomes stronger, the normalized spreading diameter of the first molecular layer on the wall remains less dependent on the impact velocity. Furthermore, the time evolution of the droplet spreading changes from tˆ to logtˆ with time.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.