Abstract

T lymphocytes responding to microbial infection give rise to effector cells that mediate acute host defense and memory cells that provide long-lived immunity, but the fundamental question of when and how these cells arise remains unresolved. Here we combine single-cell gene expression analyses with machine-learning approaches to trace the transcriptional roadmap of individual CD8+ T lymphocytes throughout the course of an immune response in vivo. Gene expression signatures predictive of eventual fates could be discerned as early as the first T lymphocyte division and may be influenced by asymmetric partitioning of the interleukin-2 receptor during mitosis. These findings underscore the importance of single-cell analyses in understanding fate determination and provide new insights into the specification of divergent lymphocyte fates early during an immune response to microbial infection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call