Abstract

We investigated the effects of oxygen (O2)/glucose deprivation on intracellular sodium concentration ([Na+]i) of cortical pyramidal cells in a slice preparation of rat frontal cortex. Intracellular recordings were combined with microfluorometric measurements of [Na+]i using the Na+-sensitive dye sodium-binding benzofuran isophthalate (SBFI). Deprivation of O2/glucose caused an initial membrane hyperpolarization that was followed by a slowly developing large depolarization. Levels of [Na+]i started to increase significantly during the phase of membrane hyperpolarization. Neither tetrodotoxin, a combination of ionotropic and metabotropic glutamate receptor antagonists (D-amino-phosphonovalerate, 6-cyano-7-nitroquinoxaline-2,3-dione plus S-methyl-4-carboxyphenylglycine) nor bepridil, an inhibitor of the Na+/Ca2+-exchanger, affected these responses to O2/ glucose. The present results demonstrate that, in cortical neurons, O2/glucose deprivation induces an early rise in [Na+]i which cannot be ascribed to the activity of voltage gated Na+-channels, glutamate receptors or of the Na+/Ca2+-exchanger.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.