Abstract
Unlike the other terrestrial planets, Earth has a substantial silica-rich continental crust with a bulk andesitic composition. A small number of meteorites with andesitic bulk compositions have been identified that are thought to be the products of partial melting of chondritic protoliths, a mode of petrogenesis distinct from that of Earth’s continental crust. Here we show, using geochemical analyses, that unlike other known andesitic meteorites, Erg Chech 002 has strongly fractionated and low abundances of the highly siderophile elements and mineralogy consistent with origin from a melt. The meteorite’s bulk composition, which is similar to terrestrial andesites, cannot be explained by partial melting of basaltic lithologies and instead requires a metal-free chondritic source. We argue that Erg Chech 002 probably formed by ~15–25% melting of the mantle of an alkali-undepleted differentiated asteroid. Our findings suggest that extensive silicate differentiation after metal–silicate equilibration of chondritic parent bodies was already occurring within the first 2.25 million years of Solar System history and that andesitic crust formation does not necessarily require plate tectonics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.