Abstract

Mycobacterium tuberculosis (Mtb) is an intracellular pathogen that triggers several survival mechanisms against the host immune system. Many studies show that the diverse components of Mtb can modulate apoptosis in various types of cells differently. So far, apoptosis induced by ESAT-6, an early secreted antigenic target of 6-kDa of Mtb, has been studied but the details of molecular mechanism and signaling pathway remain incompletely defined. This study investigated the role of recombinant ESAT-6 in inducing apoptosis in primary bone marrow-derived macrophages (BMDMs) of mice using Annexin V/PI assay with FACS analysis and Western blotting technique. It has been found that ESAT-6-induced apoptosis in BMDMs in a dose- and time-dependent pattern. Apoptosis induced by ESAT-6 was mainly via the intrinsic pathway with elevated protein levels of cleaved caspase-9 and -3. Furthermore, ESAT-6 also induced Bim activation during this process. Interestingly, this event was TLR2-dependent since the effect of ESAT-6 on apoptosis vanished in BMDM from mice with TLR2 deficiency. Furthermore, ROS generation and MAPKs phosphorylation induced by ESAT-6 were also involved in caspase-9 and caspase-3 activation. Taken together, these data suggest that ESAT-6-mediated apoptosis is involved in ROS-MAPKs signaling and further activating theintrinsic pathway, which provides new insights into the basic physiology of macrophage death in tuberculosis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call