Abstract

As an early stage of Alzheimer's disease (AD), the diagnosis of amnestic mild cognitive impairment (aMCI) has important clinical value for timely intervention of AD. Functional near-infrared spectroscopy (fNIRS)-based resting-state brain connectivity analysis, which could provide an economic and quick screening strategy for aMCI, remains to be extensively investigated. This study aimed to verify the feasibility of fNIRS-based resting-state brain connectivity for evaluating brain function in patients with aMCI, and to determine an early screening model for auxiliary diagnosis. The resting-state fNIRS was utilized for exploring the changes in functional connectivity of 64 patients with aMCI. The region of interest (ROI)-based and channel-based connections with significant inter-group differences have been extracted through the two-sample -tests and the receiver operating characteristic (ROC). These connections with specificity and sensitivity were then taken as features for classification. Compared with healthy controls, connections of the MCI group were significantly reduced between the bilateral prefrontal, parietal, occipital, and right temporal lobes. Specifically, the long-range connections from prefrontal to occipital lobe, and from prefrontal to parietal lobe, exhibited stronger identifiability (area under the ROC curve , ** ). Subsequently, the optimal classification accuracy of ROI-based connections was 71.59%. Furthermore, the most responsive connections were located between the right dorsolateral prefrontal lobe and the left occipital lobe, concomitant with the highest classification accuracy of 73.86%. Our findings indicate that fNIRS-based resting-state functional connectivity analysis could support MCI diagnosis. Notably, long-range connections involving the prefrontal and occipital lobes have the potential to be efficient biomarkers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call