Abstract

We present a 1.1~mm census of dense cores in the Mon~R2 Giant Molecular Cloud with the AzTEC instrument on the Large Millimeter Telescope (LMT). We detect 295 cores (209 starless, and 86 with protostars) in a two square degree shallow survey. We also carry out a deep follow-up survey of 9 regions with low to intermediate ($3<A_V<7$) gas column densities and detect 60 new cores in the deeper survey which allows us to derive a completeness limit. After performing corrections for low signal-to-noise cores, we find a median core mass of $\sim 2.1 \text{M}_{\odot}$ and a median size of $ 0.08$~pc. $46\%$ of the cores (141) have masses exceeding the local Bonor-Ebert mass for cores with T=12K, suggesting that in the absence of supporting non-thermal pressure, these regions are unstable to gravitational collapse. We present the core mass function (CMF) for various subdivisions of the core sample. We find that cores with masses $>$10~$M_{\odot}$ are exclusively found in regions with high core number densities and that the CMF of the starless cores has an excess of low-mass cores ($<$5~$M_{\odot}$) compared to the CMF of protostellar cores. We report a power law correlation of index $1.99 \pm 0.03$ between local core mass density and gas column density (as traced by Herschel) over a wide range of size scales (0.3-5~pc). This power law is consistent with that predicted for thermal fragmentation of a self-gravitating sheet.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.