Abstract

The Cosmic Background Explorer, launched November 18, 1989, has nearly completed its first full mapping of the sky with all three of its instruments: a Far Infrared Absolute Spectrophotometer (FIRAS) covering 0.1 to 10 mm, a set of Differential Microwave Radiometers (DMR) operating at 3.3, 5.7, and 9.6 mm, and a Diffuse Infrared Background Experiment (DIRBE) spanning 1 to 300 μm in ten bands. A preliminary map of the sky derived from DIRBE data is presented. Initial cosmological implications include: a limit on the Comptonization y parameter of 10−3, on the chemical potential μ parameter of 10−2, a strong limit on the existence of a hot smooth intergalactic medium, and a confirmation that the dipole anisotropy has the spectrum expected from a Doppler shift of a blackbody. There are no significant anisotropies in the microwave sky detected, other than from our own galaxy and a cos θ dipole anisotropy whose amplitude and direction agree with previous data. At shorter wavelengths, the sky spectrum and anisotropies are dominated by emission from ‘local’ sources of emission within our Galaxy and Solar System. Preliminary comparison of IRAS and DIRBE sky brightnesses toward the ecliptic poles shows the IRAS values to be significantly higher than found by DIRBE at 100 μm. We suggest the presence of gain and zero‐point errors in the IRAS total brightness data. The spacecraft, instrument designs, and data reduction methods are described.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.