Abstract

The proton transfer reaction belongs to one of the key triggers for the functional expression of membrane proteins. Rod and cone opsins are light-sensitive G-protein-coupled receptors (GPCRs) that undergo the cis-trans isomerization of the retinal chromophore in response to light. The isomerization event initiates a conformational change in the opsin protein moiety, which propagates the downstream effector signaling. The final step of receptor activation is the deprotonation of the retinal Schiff base, a proton transfer reaction which has been believed to be identical among the cone opsins. Here, we report an unexpected proton transfer reaction occurring in the early photoreaction process of primate blue-sensitive pigment (MB). By using low-temperature UV-visible spectroscopy, we found that the Lumi intermediate of MB formed in transition from the BL intermediate shows an absorption maximum in the UV region, indicating the deprotonation of the retinal Schiff base. Comparison of the light-induced difference FTIR spectra of Batho, BL, and Lumi showed significant α-helical backbone C=O stretching and protonated carboxylate C=O stretching vibrations only in the Lumi intermediate. The transition from BL to Lumi thus involves dramatic changes in protein environment with a proton transfer reaction between the Schiff base and the counterion resulting in an absorption maximum in the UV region.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call