Abstract

Magnesium phosphate cement (MPC) is a high-performance repairing material suitable for the interfacial disease of slab track. In this study, the early properties of MPC were optimized using central composite design (CCD) approach based on response surface methodology (RSM). Three factors with five levels and three responses were considered. The significance of the factors and their interactions were verified by using analysis of variance (ANOVA). The result show that the mass ratio of water-to-binder (W/b) affects fluidity, while the mass ratio of magnesia-to-phosphate (M/P) and borax-to-magnesia (B/M) impact the setting time of MPC. Higher W/b results in higher fluidity, while an increase in M/P reduces the setting time by increasing the neutralization reaction. Borax addition retards the reaction, prolonging the setting time. The three factors significantly affect the early compressive strength of MPC. At M/P = 3.5, the interweaving of MgO and K-struvite (MKP) forms a dense network structure, enhancing the strength. Borax and W/b interact to affect compressive strength, with borax retarding MKP crystal growth and higher W/b reducing compactness. Combined with microscopic property test, the strength generation mechanism of MPC with optimized mixing ratio was revealed, And the feasibility of field application of MPC was verified by strength test.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.