Abstract

This article, written by JPT Technology Editor Chris Carpenter, contains highlights of paper SPE 202246, “Wheatstone: What We Have Learned in Early Production Life,” by John Pescod, SPE, Paul Connell, SPE, and Zhi Xia, Chevron, et al., prepared for the 2020 SPE Asia Pacific Oil and Gas Conference and Exhibition, originally scheduled to be held in Perth, Australia, 20–22 October. The paper has not been peer reviewed. Wheatstone and Iago gas fields, part of the larger Wheatstone project, commenced production in June 2017. The foundation subsea system includes nine Wheatstone and Iago development wells tied back to a central Wheatstone platform (WP) for processing. Hydrocarbons then flow through an export pipeline to an onshore processing facility that includes two liquefied-natural-gas (LNG) trains and a domestic gas facility. The complete paper highlights some of the key learnings in well and reservoir surveillance analysis and optimization (SA&O) developed using data from early production. Asset Overview Chevron Australia’s Wheatstone project is in the North West Shelf region offshore Australia (Fig. 1). Two gas fields, Wheatstone and Iago (along with a field operated by a different company), currently tie into the WP in the Northern Carnarvon Basin. These two gas fields are in water depths between 150 and 400 m. The platform processes gas and condensate through dehydration and compression facilities before export by a 220-km, 44-in., trunkline to two 4.45-million-tonnes/year LNG trains and a 200 tera-joule/day domestic gas plant. A Wheatstone/Iago subsea system consisting of two main corridors delivers production from north and south of the Wheatstone and Iago fields to the WP. Currently, the subsea system consists of nine subsea foundation development wells, three subsea production manifolds, two subsea 24-in. production flowlines, and two subsea 14-in. utility lines. The nine foundation development wells feed the subsea manifolds at rates of up to 250 MMscf/D. These wells have openhole gravel-pack completions for active sand control and permanent downhole gauges situated approximately 1000-m true vertical depth above the top porosity of multi-Darcy reservoir intervals for pressure and temperature monitoring. All wells deviate between 45 and 60° through the reservoir with stepout lengths of up to 2.5 km. The two subsea 24-in. production flowlines carry production fluids from the subsea manifolds to two separation trains on the WP. Each platform inlet production separator can handle up to 800 MMscf/D. The two 14-in. utility flowlines installed to the subsea manifolds allow routing of a single well to the platform multiuse header, which can direct flow into the multiuse separator (MUS) or other production separators at a rate of 250 MMscf/D.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.