Abstract

Adrenal steroid hormones and neuronal growth factors are two interacting systemic factors that mediate the environment's influence on the brain's structure and function. In order to further elucidate their role and relationship in the effects of early stressful experience and isolated rearing (IR), this study measured blood corticosterone titres and relative adrenal weights and assessed nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) concentrations in brain regions of both hemispheres of young adult Mongolian gerbils injected on postnatal day 14 with a single high dose of methamphetamine (MA) or saline and raised after weaning either in an enriched or an impoverished environment. Irrespective of MA challenge, IR decreased corticosterone titres to about half, but increased relative adrenal weights. BDNF concentrations were decreased by IR in saline-injected animals in the left prefrontal and parietal cortices and right entorhinal and hippocampal cortices, and in the subcortical regions of both hemispheres. NGF concentrations were unaltered by IR in saline-injected animals, but increased in MA challenged animals in the entorhinal/hippocampal cortices and subcortical areas of both hemispheres. MA application induced shifts of the lateral asymmetry in NGF contents in prefrontal and entorhinal cortices. The results suggest that an early pharmacological traumatization can set a switch for further brain development, and that growth factor concentrations might possibly be influenced by peripheral stress hormones.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call