Abstract

Background:In low-risk gestational trophoblastic neoplasia (GTN) patients, a predictive marker for early identification of methotrexate (MTX) resistance would be useful. We previously demonstrated that kinetic modelling of human chorionic gonadotrophin (hCG) measurements could provide such a marker. Here we validate this approach in a large independent patient cohort.Methods:Serum hCG measurements of 800 low-risk GTN patients treated with MTX were analysed. The cohort was divided into Model and Test data sets. hCG kinetics were described from initial treatment day to day 50 using: ‘(hCG(time))=hCG0*exp(–k*time)+hCGres', where hCGres is the modelled residual production, hCG0 is the baseline hCG level, and k is the rate constant. HCGres-predictive value was investigated against previously reported predictors of MTX resistance.Results:Declining hCG measurements were well fitted by the model. The best discriminator of MTX resistance in the Model data set was hCGres, categorised by an optimal cut-off value of >20.44 IU l−1: receiver-operating characteristic (ROC) area under the curve (AUC)=0.87; Se=0.91; Sp=0.83. The predictive value of hCGres was reproducible using the Test data set: ROC AUC=0.87; Se=0.88; Sp=0.86. Multivariate analyses revealed hCGres as a better predictor of MTX resistance (HR=1.01, P<0.0001) and MTX failure-free survival (HR=13.25, P<0.0001) than other reported predictive factors.Conclusion:hCGres, a modelled kinetic parameter calculated after fully dosed three MTX cycles, has a reproducible value for identifying patients with MTX resistance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call