Abstract

The aim of this work was to use spectroscopic methods and partial least squares discriminant analysis (PLS-DA) for the early prediction of genotype resistance or susceptibility to sugarcane borer. The sugarcane leaf +1 was directly analyzed with no sample preparation by ultraviolet-visible-near-infrared (UV-VIS-NIR), middle-infrared (MID), and near-infrared (NIR) spectroscopies. Also, laser-induced breakdown spectroscopy (LIBS) was used to analyze pellets of dried and ground leaves and stalks of sugarcane. Classification models were built using PLS-DA. The models built using UV-VIS-NIR, MID or NIR spectra exhibited ideal sensitivity, specificity, and classification errors, i.e., 1 for both sensitivity and specificity and 0 for classification errors. Regarding the models built using LIBS spectra, those using spectra of pellets made from dried and ground leaves also presented ideal sensitivity, specificity, and classification errors; on the other hand, models built using the spectra of pellets made of dried and ground stalks did not present ideal values for these parameters. Thus, the models built, except for the one using LIBS of pellets made of stalks, showed excellent predictive capacity, making them suitable for predicting the resistance or susceptibility of sugarcane genotypes in the early stages of a plant's life.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call