Abstract
Predicting students’ performance is one of the most important issues in educational data mining. In this study, a method for representing students’ partial sequence of learning activities is proposed, and an early prediction model of students’ performance is designed based on a deep neural network. This model uses a pre-trained autoencoder to extract latent features from the sequence in order to make predictions. The experimental results show that: (1) compared with demographic features and assessment scores, 20% and wholly online learning activity sequences can achieve a classifier accuracy of 0.5 and 0.84, respectively, which can be used for an early prediction of students’ performance; (2) the proposed autoencoder can extract latent features from the original sequence effectively, and the accuracy of the prediction can be improved more than 30% by using latent features; (3) after using distance-based oversampling on the imbalanced training datasets, the end-to-end prediction model achieves an accuracy of more than 80% and has a better performance for non-major academic grades.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.