Abstract

Abstract Activity recognition is a crucial aspect in smart manufacturing and human-robot collaboration, as robots play a vital role in improving efficiency and safety by accurately recognizing human intentions and proactively assisting with tasks. Current human intention recognition applications only consider the accuracy of recognition but ignore the importance of predicting it in advance. Given human reaching movements, we want to equip the robot with the ability to predict human intent not only with precise recognition but also at an early stage. In this paper, we propose a framework to apply Transformer-based and LSTM-based models to learn motion intentions. Second, based on the observation of distances of human joints along the motion trajectory, we explore how we can use the hidden Markov model to find intent state transitions, i.e., intent uncertainty and intent certainty. Finally, two data types are generated, one for the full data and the other for the length of data before state transitions; both data are evaluated on models to assess the robustness of intention prediction. We conducted experiments in a manufacturing workspace where the experimenter reaches multiple scattered targets and further this experimental scenario was designed to examine how intents differ, but motions are only slightly different. The proposed models were then evaluated with experimental data, and further performance comparisons were made between models and between different intents. Finally, early predictions were validated to be better than using full-length data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.