Abstract
Background Cerebral malaria (CM) is a life-threatening disease, caused mainly by Plasmodium falciparum in humans. In adults only 1–2 % of P. falciparum-infected hosts transit to the cerebral form of the disease while most exhibit non-cerebral malaria (NCM). The perturbed metabolic pathways of CM and NCM have been reported. Early marker(s) of CM is(are) not known and by the time a patient exhibits the pathological symptoms of CM, the disease has progressed. Murine CM, like the human disease, is difficult to assign to specific animals at early stage and hence the challenge to treat CM at pre-clinical stage of the disease. This is the first report of prediction of CM in mice using a novel strategy based on 1H nuclear magnetic resonance (NMR)-based metabolomics.MethodsMice were infected with malarial parasites, and serum was collected from all the animals (CM/NCM) before CM symptoms were apparent. The assignment of mice as NCM/CM at an early time point is based on their symptoms at days 8–9 post-infection (pi). The serum samples were subjected to 1H NMR-based metabolomics. 1H NMR spectra of the serum samples, collected at various time points (pi) in multiple sets of experiments, were subjected to multivariate analyses.ResultsThe results from orthogonal partial least square discriminant analyses (OPLS-DA) suggest that the animals with CM start to diverge out in metabolic profile and were distinct on day 4 pi, although by physical observation they were indistinguishable from the NCM. The metabolites that appeared to contribute to this distinction were serum lipids and lipoproteins, and 14–19 % enhancement was observed in mice afflicted with CM. A cut-off of 14 % change of total lipoproteins in serum predicts 54–71 % CM in different experiments at day 4 pi.ConclusionThis study clearly demonstrates the possibility of differentiating and identifying animals with CM at an early, pre-clinical stage. The strategy, based on metabolite profile of serum, tested with different batches of animals in both the sex and across different times of the year, is found to be robust. This is the first such study of pre-clinical prognosis of CM.Electronic supplementary materialThe online version of this article (doi:10.1186/s12936-016-1256-z) contains supplementary material, which is available to authorized users.
Highlights
Cerebral malaria (CM) is a life-threatening disease, caused mainly by Plasmodium falciparum in humans
The results suggest that serum lipids/lipoproteins levels may represent early indicators of the onset of CM in both male and female animals
The orthogonal partial least square discriminant analyses (OPLS-DA) coefficient plot (Fig. 2B) clearly suggests that lipids/lipoproteins concentrations are high in CM, while that of glucose is low
Summary
Cerebral malaria (CM) is a life-threatening disease, caused mainly by Plasmodium falciparum in humans. Murine CM, like the human disease, is difficult to assign to specific animals at early stage and the challenge to treat CM at pre-clinical stage of the disease. This is the first report of prediction of CM in mice using a novel strategy based on 1H nuclear magnetic resonance (NMR)-based metabolomics. The best available is the murine model, which may have certain limitations, but exhibits a range of similarities, including perturbations in the integrity of the blood–brain barrier, infected red blood cell (RBC) sequestration to the cerebral microvasculature, microvascular damage, and generation of cognitive impairments [7,8,9]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.