Abstract

BackgroundBlood stream infection (BSI) and sepsis are serious clinical conditions and identification of the disease-causing pathogen is important for patient management. The RISE (Rapid Identification of SEpsis) study was carried out to collect a cohort allowing high-quality studies on different aspects of BSI and sepsis. The aim of this study was to identify patients at high risk for BSI who might benefit most from new, faster, etiological testing using neutrophil to lymphocyte count ratio (NLCR) and Shapiro score.MethodsAdult patients (≥ 18 years) presenting at the emergency department (ED) with suspected BSI were prospectively included between 2014 and 2016 at Örebro University Hospital. Besides extra blood sampling, all study patients were treated according to ED routines. Electronic patient charts were retrospectively reviewed. A modified Shapiro score (MSS) and NLCR were extracted and compiled. Continuous score variables were analysed with area under receiver operator characteristics curves (AUC) to evaluate the ability of BSI prediction.ResultsThe final cohort consisted of 484 patients where 84 (17%) had positive blood culture judged clinically significant. At optimal cut-offs, MSS (≥3 points) and NLCR (> 12) showed equal ability to predict BSI in the whole cohort (AUC 0.71/0.74; sensitivity 69%/67%; specificity 64%/68% respectively) and in a subgroup of 155 patients fulfilling Sepsis-3 criteria (AUC 0.71/0.66; sensitivity 81%/65%; specificity 46%/57% respectively). In BSI cases only predicted by NLCR> 12 the abundance of Gram-negative to Gram-positive pathogens (n = 13 to n = 4) differed significantly from those only predicted by MSS ≥3 p (n = 7 to n = 12 respectively) (p < 0.05).ConclusionsMSS and NLCR predicted BSI in the RISE cohort with similar cut-offs as shown in previous studies. Combining the MSS and NLCR did not increase the predictive performance. Differences in BSI prediction between MSS and NLCR regarding etiology need further evaluation.

Highlights

  • Blood stream infection (BSI) is a serious condition associated with high morbidity and mortality [1] with an annual incidence of 0.04–0.1% in community-acquired infections [2]

  • Of the 484 included patients, 99 (20%) had positive blood cultures, and 84 (85%) of these were considered clinically relevant with a total of 90 bacterial isolates (Table 3)

  • In BSI cases only predicted by neutrophil to lymphocyte count ratio (NLCR)> the abundance of Gram-negative to Grampositive isolated pathogens (n = to n = 4) differed significantly from those only predicted by Modified Shapiro score (MSS) ≥3 p (n = 7 to n = 12 respectively) (p < 0.05), Fig. 2a

Read more

Summary

Introduction

Blood stream infection (BSI) is a serious condition associated with high morbidity and mortality [1] with an annual incidence of 0.04–0.1% in community-acquired infections [2]. It would be valuable to identify patients with a high risk of BSI, which could benefit the most from novel, fast, pathogen identification methods, and several BSI prediction tools have been proposed. These have been single biomarkers (e.g. C-reactive protein [9], serum procalcitonin [10] and serum lactate [11]) or a combination of clinical parameters and biomarkers [12,13,14]. The aim of this study was to identify patients at high risk for BSI who might benefit most from new, faster, etiological testing using neutrophil to lymphocyte count ratio (NLCR) and Shapiro score

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.