Abstract

The aim of the study is to evaluate the performance of a biomarker-based machine learning (ML) model (not including vital signs) derived from reviewed rapid response team (RRT) activations in predicting all-cause deterioration in general wards patients. This is a retrospective single-institution study. All consecutive adult patients' cases on noncritical wards identified by RRT calls occurring at least 24 hours after patient admission, between April 2018 and June 2020, were included. The cases were reviewed and labeled for clinical deterioration by a multidisciplinary expert consensus panel. A supervised learning approach was adopted based on a set of biomarkers and demographic data available in the patient's electronic medical record (EMR). The setting is a 250-bed tertiary university hospital with a basic EMR, with adult (>18 y) patients on general wards. The study analyzed the cases of 514 patients for which the RRT was activated. Rapid response teams were extracted from the hospital telephone log data. Two hundred eighteen clinical deterioration cases were identified in these patients after expert chart review and complemented by 146 "nonevent" cases to build the training and validation data set. None. The best performance was achieved with the random forests algorithm, with a maximal area under the receiver operating curve of 0.90 and F1 score of 0.85 obtained at prediction time T0-6h, slightly decreasing but still acceptable (area under the receiver operating curve, >0.8; F1 score, >0.75) at T0-42h. The system outperformed most classical track-and-trigger systems both in terms of prediction performance and prediction horizon. In hospitals with a basic EMR, a biomarker-based ML model could be used to predict clinical deterioration in general wards patients earlier than classical track-and-trigger systems, thus enabling appropriate clinical interventions for patient safety and improved outcomes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.