Abstract

BackgroundAccelerated knee osteoarthritis (AKOA) is characterized by more pain, impaired physical function, and greater likelihood to receive a joint replacement compared to individuals who develop the typical gradual onset of disease. Prognostic tools are needed to determine which structural pathologies precede the development of AKOA compared to individuals without AKOA. Therefore, the purpose of this manuscript was to determine which pre-radiographic structural features precede the development of AKOA.MethodsThe sample comprised participants in the Osteoarthritis Initiative (OAI) who had at least one radiographically normal knee at baseline (Kellgren-Lawrence [KL] grade < 1). Participants were classified into 2 groups based on radiographic progression from baseline to 48 months: AKOA (KL grade change from < 1 to > 3) and No AKOA. The index visit was the study visit when participants met criteria for AKOA or a matched timepoint for those who did not develop AKOA. Magnetic resonance (MR) images were assessed for 12 structural features at the OAI baseline, and 1 and 2 years prior to the index visit. Separate logistic regression models (i.e. OAI baseline, 1 and 2 years prior) were used to determine which pre-radiographic structural features were more likely to antedate the development of AKOA compared to individuals not developing AKOA.ResultsAt the OAI baseline visit, degenerative cruciate ligaments (Odds Ratio [OR] = 2.2, 95% Confidence Interval [CI] = 1.3,3.5), infrapatellar fat pad signal intensity alteration (OR = 2.0, 95%CI = 1.2,3.2), medial/lateral meniscal pathology (OR = 2.1/2.4, 95%CI = 1.3,3.4/1.5,3.8), and greater quantitative knee effusion-synovitis (OR = 2.2, 95%CI = 1.4,3.4) were more likely to antedate the development of AKOA when compared to those that did not develop AKOA. These results were similar at one and two years prior to disease onset. Additionally, medial meniscus extrusion at one year prior to disease onset (OR = 3.5, 95%CI = 2.1,6.0) increased the likelihood of developing AKOA.ConclusionsEarly ligamentous degeneration, effusion/synovitis, and meniscal pathology precede the onset of AKOA and may be prognostic biomarkers.

Highlights

  • Accelerated knee osteoarthritis (AKOA) is characterized by more pain, impaired physical function, and greater likelihood to receive a joint replacement compared to individuals who develop the typical gradual onset of disease

  • The annual Magnetic resonance (MR) image assessments of the Osteoarthritis Initiative (OAI) in individuals with radiographically normal knees allows for the unique ability to monitor early pre-radiographic structural alterations prior to the rapid decline in joint health associated with Accelerated knee OA (AKOA)

  • At the OAI baseline visit, degenerative cruciate ligaments (OR = 2.15; 95%Confidence intervals (CI) = 1.34, 3.45; p = 0.002 Table 2), infrapatellar fat pad signal intensity alteration (OR = 1.98; 95%CI = 1.24, 3.15; p = 0.004), medial meniscal pathology (OR = 2.14; 95%CI = 1.33, 3.43; p = 0.002), lateral meniscal pathology (OR = 2.36; 95%CI = 1.47, 3.79; p = 0.0004), and large effusion-synovitis volume were more likely to antedate the development of AKOA when compared to those that did not develop AKOA

Read more

Summary

Introduction

Accelerated knee osteoarthritis (AKOA) is characterized by more pain, impaired physical function, and greater likelihood to receive a joint replacement compared to individuals who develop the typical gradual onset of disease. Prognostic tools are needed to determine which structural pathologies precede the development of AKOA compared to individuals without AKOA. Accelerated knee OA (AKOA) represents a greater personal burden compared to typical knee OA, because individuals with AKOA are more likely to report frequent knee pain and greater self-reported global impact of arthritis (i.e., 0–10 global rating scale), as well as present with decreased physical function performance (e.g. slower walking and chair-stand pace) [2]. The annual MR image assessments of the Osteoarthritis Initiative (OAI) in individuals with radiographically normal knees allows for the unique ability to monitor early pre-radiographic structural alterations prior to the rapid decline in joint health associated with AKOA

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call