Abstract

Perinatal infection is a well-identified risk factor for a number of neurodevelopmental disorders, including brain white matter injury (WMI) and Autism Spectrum Disorders (ASD). The underlying mechanisms by which early life inflammatory events cause aberrant neural, cytoarchitectural, and network organization, remain elusive. This study is aimed to investigate how systemic lipopolysaccharide (LPS)-induced neuroinflammation affects microglia phenotypes and early neural developmental events in rats. We show here that LPS exposure at early postnatal day 3 leads to a robust microglia activation which is characterized with mixed microglial proinflammatory (M1) and anti-inflammatory (M2) phenotypes. More specifically, we found that microglial M1 markers iNOS and MHC-II were induced at relatively low levels in a regionally restricted manner, whereas M2 markers CD206 and TGFβ were strongly upregulated in a sub-set of activated microglia in multiple white and gray matter structures. This unique microglial response was associated with a marked decrease in naturally occurring apoptosis, but an increase in cell proliferation in the subventricular zone (SVZ) and the dentate gyrus (DG) of hippocampus. LPS exposure also leads to a significant increase in oligodendrocyte lineage population without causing discernible hypermyelination. Moreover, LPS-exposed rats exhibited significant impairments in communicative and cognitive functions. These findings suggest a possible role of M2-like microglial activation in abnormal neural development that may underlie ASD-like behavioral impairments.

Highlights

  • Very low birth weight infants (VLBW,

  • INOS+ cells were noted only in the meninges between the corpus callosum and the septum or the cortex (Fig 2D, arrow heads), while a small number of Major histocompatibility complex-II (MHC-II)+ cells were detected in the subventricular zone (SVZ) and meninges (Fig 2E–2J), but not other brain regions

  • The major finding of this study is that early postnatal exposure to systemic LPS leads to a robust microglia activation characterized with mixed M1 and M2 phenotypes

Read more

Summary

Introduction

Very low birth weight infants (VLBW,

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.