Abstract
Methods Myocardial T1 mapping was performed in two cohorts (1) “amyloid +” subjects, defined by biopsy-proven systemic amyloid with associated remodeling suggestive of cardiac involvement (left ventricular [LV] hypertrophy and/or atrial dilation); (2) normative controls without risk factors for amyloid or cardiovascular disease. CMR (1.5T) included 2 components cine-CMR (SSFP) for cardiac structure/function, and T1 mapping for myocardial tissue characterization. T1 mapping was performed using a conventional modified look locker inversion recovery (MOLLI) sequence (flip angle = 30°; matrix 256 × 128; parallel imaging reduction factor =1.5; linear view ordering; 6 Kaiser-Bessel ramp preparation; 17 heart beat acquisition), with T1 calculated using an established formula (T1 = T1* (B/A-1), T1*, A, and B obtained via three-parameter exponential fit). To test time dependent differences in myocardial T1, MOLLI was acquired at sequential time points (3,5,10,14, 20 minutes) following intravenous administration of gadolinium (0.2 mmol/kg). Results 10 subjects (5 amyloid, 5 controls) were studied (44 ± 21 years, 40% male); all amyloid affected subjects had biopsyconfirmed disease (4 light chain type, 1 transthyretin). Amyloid subjects had higher LV mass (200 ± 34 vs. 101 ± 34 gm, p = 0.004), lower myocardial contraction fraction (32 ± 8 vs. 88 ± 27, p = 0.002), and larger left atrial area (26 ± 5 vs. 18 ± 5 cm2, p = 0.03) than controls, but similar LV end-diastolic volume (120 ± 24 vs. 133 ± 45 ml, p = 0.61), stroke volume (66 ± 10 vs. 86 ± 30 ml, p = 0.20), and LVEF (56 ± 10 vs. 65 ± 4%, p = 0.11). MOLLI was successfully acquired in all subjects at each time point: T1 differed significantly (all p ≤ 0.05) between amyloid and control groups at all times (Figure 1). However, magnitude of difference temporally decreased following gadolinium administration (Figure 2): T1 differences between patients and controls were maximal at 3 minutes post-contrast (135 ± 15 vs. 310 ± 61 msec, p = 0.004) with progressive decrements thereafter, as evidenced by 57% relative difference between groups at 3 minutes and only a 36% difference at 20 minutes following gadolinium infusion.
Highlights
Myocardial T1 mapping is increasingly used to diagnose and quantify disease burden in patients with known or suspected cardiac amyloid
Myocardial T1 mapping was performed in two cohorts (1) “amyloid +” subjects, defined by biopsy-proven systemic amyloid with associated remodeling suggestive of cardiac involvement; (2) normative controls without risk factors for amyloid or cardiovascular disease
T1 mapping was performed using a conventional modified look locker inversion recovery (MOLLI) sequence, with T1 calculated using an established formula (T1 = T1* (B/A-1), T1*, A, and B obtained via three-parameter exponential fit)
Summary
Myocardial T1 mapping is increasingly used to diagnose and quantify disease burden in patients with known or suspected cardiac amyloid. Post-contrast T1 mapping yields maximal discriminatory capacity for detection of cardiac amyloid - influence of temporal T1 differences on MOLLI imaging
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.