Abstract
<p>Deckenschotter (Cover Gravels in German) are Quaternary glacio-fluvial gravels, which unconformably overlie Tertiary Molasse or Mesozoic bedrock in the Northern Alpine Foreland. They comprise also the evidence of the Early Pleistocene glaciations. A significant phase of incision separated them into Höhere Deckenschotter (HDS: Higher Cover Gravels) and Tiefere Deckenschotter (TDS: Lower Cover Gravels) based on their topography. How the landscape evolved during Deckenschotter times is still not fully understood. The new cosmogenic nuclide chronology suggests that HDS deposited around 2 Ma and TDS around 1 Ma. In addition, 2 Ma old Deckenschotter are located at the same topographic elevation as the 1 Ma ones at Irchel (Canton of Zurich). This, indeed, points to cut-and-fill sequences and challenges the chronology based on the morphostratigraphy.</p><p>The aim of this study is to reconstruct the drainage patterns, base level changes, and thus the landscape evolution in the northern Alpine Foreland during the Early Pleistocene. Therefore, we focused on three Deckenschotter sites at Irchel and one in the area around Lake Constance. Sediments at these sites were analysed in detail to reveal their provenance, transport mechanism, depositional environment, and paleoflow regimes. Their chronology was established by isochron-burial dating. Our results indicate that the analysed sediments were transported from the Central and eastern Central Alps as well as from the Molasse to the foreland first by glaciers and then by rivers. They are deposited in a glacio-fluvial environment in the vicinity of a glacier. Based on the reconstructed chronology in this study and published cosmogenic nuclide ages, we propose that Deckenschotter are cut-and-fill sequences accumulated in three pulses between 2.5 Ma and 1 Ma. This cut-and-fill system implies that the regional base level was relatively constant during the Early Pleistocene. In addition, the depositional environment of Deckenschotter shows the presence of glaciers in the foreland. The 2.5 Ma old gravels, therefore, document the first advance of glaciers onto the Alpine Foreland. This seems to be synchronous with a first onset of glaciations on the northern hemisphere, which is assumed to occur at around 2.7 Ma.</p>
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.