Abstract

Abstract Crustal anatexis is an important process in the tectonic evolution of many orogenic systems. In the Wuyi-Yunkai orogen in the South China block, the duration of partial melting and its relationship with orogenesis are poorly constrained. In this study, we present a multifaceted approach to determine the timing of anatexis and unravel the petrogenesis of Fuhuling migmatites in the Yunkai region of the southwestern South China block. Geochemical analyses indicate that the migmatites have (meta-)sedimentary protoliths. The absence of anhydrous peritectic minerals but the presence of microstructural and outcrop-scale indicators of partial melting suggest that the Fuhuling migmatites experienced fluid-present melting. Complex zoning and variable trace element concentrations in newly formed zircons in migmatites reflect their evolutionary histories during partial melting. Anatectic melt was present at Fuhuling in the Yunkai region from ca. 449–427 Ma during early Paleozoic Wuyi-Yunkai orogenesis. The wide variety of morphologies observed in the Fuhuling migmatites implies that migmatites in the Yunkai region experienced incipient partial melting, melt segregation, and melt migration. Combining new and previous results, we argue that the Yunkai region experienced two stages of crustal anatexis during the early Paleozoic, which may have been triggered by crustal thickening followed by rapid exhumation and orogenic collapse during the intra-plate Wuyi-Yunkai orogeny in the South China block.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call