Abstract

Our understanding of both the role and impact of Arctic environmental changes under the current global warming climate is rather limited despite efforts of improved monitoring and wider assessment through remote sensing technology. Changes of Arctic ecosystems under early Paleogene warming climate provide an analogue to evaluate long-term responses of Arctic environmental alteration to global warming. This study reviews Arctic terrestrial ecosystems and their transformation under marked change of hydrological conditions during the warmest period in early Cenozoic, the Paleocene and Eocene. We describe a new approach to quantitatively reconstruct high latitudinal paleohydrology using compound-specific hydrogen isotope analysis which applies empirically derived genus-specific hydrogen isotope fractionations to in situ biomolecules from fossil plants. We propose a moisture recycling model at the Arctic to explain the reconstructed hydrogen isotope signals of ancient high latitude precipitation during early Paleogene, which bears implications to the likely change of modern Arctic ecosystems under the projected accelerated global warming.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call