Abstract

BackgroundDiabetes is associated with a cardiomyopathy that is independent of coronary artery disease or hypertension. In the present study we used in vivo magnetic resonance imaging (MRI) and echocardiographic techniques to examine and characterize early changes in myocardial function in a mouse model of type 1 diabetes.MethodsDiabetes was induced in 8-week old C57BL/6 mice with two intraperitoneal injections of streptozotocin. The blood glucose levels were maintained at 19–25 mmol/l using intermittent low dosages of long acting insulin glargine. MRI and echocardiography were performed at 4 weeks of diabetes (age of 12 weeks) in diabetic mice and age-matched controls.ResultsAfter 4 weeks of hyperglycemia one marker of mitochondrial function, NADH oxidase activity, was decreased to 50% of control animals. MRI studies of diabetic mice at 4 weeks demonstrated significant deficits in myocardial morphology and functionality including: a decreased left ventricular (LV) wall thickness, an increased LV end-systolic diameter and volume, a diminished LV ejection fraction and cardiac output, a decreased LV circumferential shortening, and decreased LV peak ejection and filling rates. M-mode echocardiographic and Doppler flow studies of diabetic mice at 4 weeks showed a decreased wall thickening and increased E/A ratio, supporting both systolic and diastolic dysfunction.ConclusionOur study demonstrates that MRI interrogation can identify the onset of diabetic cardiomyopathy in mice with its impaired functional capacity and altered morphology. The MRI technique will lend itself to repetitive study of early changes in cardiac function in small animal models of diabetic cardiomyopathy.

Highlights

  • Diabetes is associated with a cardiomyopathy that is independent of coronary artery disease or hypertension

  • The existence of diabetic cardiomyopathy, a myocardial disease associated with diabetes in the absence of coronary artery disease, hypertension or any other known cardiac disease, is supported by evidence accumulated from a large and expanding literature [1,2,3,4]

  • Assessment of cardiac function in mouse models of both type 1 and type 2 diabetes has relied on conventional echocardiography [15,16,17,19], invasive in vivo catheterization [18,19,21], or ex vivo [14,22,23] techniques with their associated restrictions upon accuracy or serial studies in timed experiments

Read more

Summary

Introduction

Diabetes is associated with a cardiomyopathy that is independent of coronary artery disease or hypertension. In the present study we used in vivo magnetic resonance imaging (MRI) and echocardiographic techniques to examine and characterize early changes in myocardial function in a mouse model of type 1 diabetes. Chemical induction of insulin deficiency by a cytotoxic agent for pancreatic beta cells, streptozotocin (STZ), produces a wellcharacterized model of type 1 diabetes [20]. This model allows more accurate timing of selected metabolic events and correlation with their pathophysiologic consequences. The use of cardiac MRI has been reported for assessment of the cardiomyopathic changes in type 2 diabetic mice [29]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call