Abstract

Differentiation of immature CD4+ CD8+ thymocytes into mature CD4+ or CD8+ T cells occurs within the thymus and is dependent upon expression of antigen receptor complexes (T cell receptor [TCR]) containing clonotypic alpha/beta proteins. We have recently found that CD4+ CD8+ thymocytes express low levels of surface TCR because of limitations placed on TCR assembly by the instability of nascent TCR-alpha proteins within the endoplasmic reticulum (ER) of immature thymocytes. Because TCR-alpha/beta expression increases during development, a molecular mechanism must exist for increasing the number of assembled TCR complexes present in immature CD4+ CD8+ thymocytes that have been signaled to differentiate into mature T cells, although no such mechanism has yet been described. In the current report we have examined the molecular consequences of intracellular signals generated by engagement of surface TCR complexes on immature CD4+ CD8+ thymocytes. Isolated TCR engagement generated signals that increased TCR-alpha RNA levels and increased synthesis of TCR-alpha proteins, which, in turn, significantly increased assembly of complete TCR-alpha/beta complexes in CD4+ CD8+ thymocytes. Increased TCR-alpha protein levels in TCR-signaled CD4+ CD8+ thymocytes was the result of increased synthesis and not increased stability of TCR-alpha proteins, indicating that TCR engagement compensates for, but does not correct, the inherent instability of TCR-alpha proteins in the ER of immature thymocytes. Consistent with the delivery by TCR engagement of a positive selection signal, TCR engagement also increased CD5 expression, decreased RAG-1 expression, and decreased CD4/CD8 coreceptor expression in immature CD4+ CD8+ thymocytes. These data identify amplified TCR-alpha expression as an initial response of immature CD4+ CD8+ thymocytes to TCR-mediated positive selection signals and provide a molecular basis for increased surface TCR density on developing thymocytes undergoing selection events within the thymus.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.