Abstract

Infants born very preterm (VPT) are at high risk of motor impairments such as cerebral palsy (CP), and diagnosis can take 2 years. Identifying in vivo determinants of CP could facilitate presymptomatic detection and targeted intervention. Our objectives were to derive micro‐ and macrostructural measures of sensorimotor white matter tract integrity from diffusion MRI at term‐equivalent age, and determine their association with early diagnosis of CP. We enrolled 263 VPT infants (≤32 weeks gestational age) as part of a large prospective cohort study. Diffusion and structural MRI were acquired at term. Following consensus guidelines, we defined early diagnosis of CP based on abnormal structural MRI at term and abnormal neuromotor exam at 3–4 months corrected age. Using Constrained Spherical Deconvolution, we derived a white matter fiber orientation distribution (fOD) for subjects, performed probabilistic whole‐brain tractography, and segmented nine sensorimotor tracts of interest. We used the recently developed fixel‐based (FB) analysis to compute fiber density (FD), fiber‐bundle cross‐section (FC), and combined fiber density and cross‐section (FDC) for each tract. Of 223 VPT infants with high‐quality diffusion MRI data, 14 (6.3%) received an early diagnosis of CP. The cohort's mean (SD) gestational age was 29.4 (2.4) weeks and postmenstrual age at MRI scan was 42.8 (1.3) weeks. FD, FC, and FDC for each sensorimotor tract were significantly associated with early CP diagnosis, with and without adjustment for confounders. Measures of sensorimotor tract integrity enhance our understanding of white matter changes that antecede and potentially contribute to the development of CP in VPT infants.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call