Abstract
Supernova (SN)-driven pregalactic outflows may be an efficient mechanism for distributing the product of stellar nucleosynthesis over large cosmological volumes prior to the reionization epoch. Here, we present results from three-dimensional numerical simulations of the dynamics of SN-driven bubbles as they propagate through and escape the grasp of subgalactic halos with masses M = 108 h-1 M☉ at redshift z = 9. Halos in this mass range are characterized by very short dynamical timescales (and even shorter gas cooling times) and may therefore form stars in a rapid but intense burst before SN quenches further star formation. The hydrodynamic simulations use a nested grid method to follow the evolution of explosive multi-SN events operating on the characteristic timescale of a few times 107 yr, the lifetime of massive stars. The results confirm that if the star formation efficiency of subgalactic halos is 10%, a significant fraction of the halo gas will be lifted out of the potential well (blow-away), shock the intergalactic medium, and pollute it with metal-enriched material, a scenario recently advocated by Madau, Ferrara, & Rees. The volume filling factor of the ejecta is of order unity. Depending on the stellar distribution, we find that less than 30% of the available SN energy gets converted into kinetic energy of the blown-away material, the remainder being radiated away. It appears that mechanical feedback is less efficient than expected from simple energetic arguments, as off-nuclear SN explosions drive inward-propagating shocks that tend to collect and pile up cold gas in the central regions of the host halo. Low-mass galaxies at early epochs may survive multiple SN events and continue forming stars.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.