Abstract

Aims/hypothesisThe aims of this study were to evaluate systematically the predictive power of comprehensive metabolomics profiles in predicting the future risk of type 2 diabetes, and to identify a panel of the most predictive metabolic markers.MethodsWe applied an unbiased systems medicine approach to mine metabolite combinations that provide added value in predicting the future incidence of type 2 diabetes beyond known risk factors. We performed mass spectrometry-based targeted, as well as global untargeted, metabolomics, measuring a total of 568 metabolites, in a Finnish cohort of 543 non-diabetic individuals from the Botnia Prospective Study, which included 146 individuals who progressed to type 2 diabetes by the end of a 10 year follow-up period. Multivariate logistic regression was used to assess statistical associations, and regularised least-squares modelling was used to perform machine learning-based risk classification and marker selection. The predictive performance of the machine learning models and marker panels was evaluated using repeated nested cross-validation, and replicated in an independent French cohort of 1044 individuals including 231 participants who progressed to type 2 diabetes during a 9 year follow-up period in the DESIR (Data from an Epidemiological Study on the Insulin Resistance Syndrome) study.ResultsNine metabolites were negatively associated (potentially protective) and 25 were positively associated with progression to type 2 diabetes. Machine learning models based on the entire metabolome predicted progression to type 2 diabetes (area under the receiver operating characteristic curve, AUC = 0.77) significantly better than the reference model based on clinical risk factors alone (AUC = 0.68; DeLong’s p = 0.0009). The panel of metabolic markers selected by the machine learning-based feature selection also significantly improved the predictive performance over the reference model (AUC = 0.78; p = 0.00019; integrated discrimination improvement, IDI = 66.7%). This approach identified novel predictive biomarkers, such as α-tocopherol, bradykinin hydroxyproline, X-12063 and X-13435, which showed added value in predicting progression to type 2 diabetes when combined with known biomarkers such as glucose, mannose and α-hydroxybutyrate and routinely used clinical risk factors.Conclusions/interpretationThis study provides a panel of novel metabolic markers for future efforts aimed at the prevention of type 2 diabetes.

Highlights

  • Type 2 diabetes is a major disease that affects more than 420 million individuals worldwide; if current trends continue, the number will surpass 700 million individuals by 2025 [1]

  • The panel of metabolic markers selected by the machine learning-based feature selection significantly improved the predictive performance over the reference model (AUC = 0.78; p = 0.00019; integrated discrimination improvement, IDI = 66.7%)

  • This approach identified novel predictive biomarkers, such as α-tocopherol, bradykinin hydroxyproline, X-12063 and X-13435, which showed added value in predicting progression to type 2 diabetes when combined with known biomarkers such as glucose, mannose and α-hydroxybutyrate and routinely used clinical risk factors

Read more

Summary

Introduction

Type 2 diabetes is a major disease that affects more than 420 million individuals worldwide; if current trends continue, the number will surpass 700 million individuals by 2025 [1]. Untargeted plasma metabolomics measuring 447 metabolites in a large cohort of women from the TwinsUK study found metabolites associated with hyperglycaemia and type 2 diabetes [11], revealing a large set of potential metabolic markers including amino acids, carbohydrates, lipids, xenobiotics and unknowns, and highlighted an important role for the catabolism of branched chain amino acids (BCAAs) in type 2 diabetes Another untargeted metabolomics study measured more than 4500 metabolites in a prospective cohort of 300 individuals who developed type 2 diabetes during 6 years follow-up and 300 matched control participants, and identified several metabolic alterations in lipid metabolism and sugars [12]. A recent meta-analysis of 19 prospective and 27 cross-sectional studies revealed the association of several metabolites with the incidence of prediabetes (i.e. impaired glucose tolerance, impaired fasting glucose, insulin resistance or impaired insulin sensitivity) and type 2 diabetes, including hexoses, aromatic amino acids, phospholipids and triacylglycerols, and confirmed the key role of BCAAs and aromatic amino acids in the prediction of type 2 diabetes [9]

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call