Abstract

Poor fetal growth, also known as intrauterine growth restriction (IUGR), is a worldwide health concern. IUGR is commonly associated with both an increased risk in perinatal mortality and a higher prevalence of developing chronic metabolic diseases later in life. Obesity, type 2 diabetes or metabolic syndrome could result from noxious “metabolic programming.” In order to better understand early alterations involved in metabolic programming, we modeled IUGR rat pups through either prenatal exposure to synthetic glucocorticoid (dams infused with dexamethasone 100 µg/kg/day, DEX) or prenatal undernutrition (dams feeding restricted to 30% of ad libitum intake, UN). Physiological (glucose and insulin tolerance), morphometric (automated tissue image analysis) and transcriptomic (quantitative PCR) approaches were combined during early life of these IUGR pups with a special focus on their endocrine pancreas and adipose tissue development. In the absence of catch-up growth before weaning, DEX and UN IUGR pups both presented basal hyperglycaemia, decreased glucose tolerance, and pancreatic islet atrophy. Other early metabolic defects were model-specific: DEX pups presented decreased insulin sensitivity whereas UN pups exhibited lowered glucose-induced insulin secretion and more marked alterations in gene expression of pancreatic islet and adipose tissue development regulators. In conclusion, these results show that before any catch-up growth, IUGR rats present early physiologic, morphologic and transcriptomic defects, which can be considered as initial mechanistic basis of metabolic programming.

Highlights

  • Adverse fetal environment alters organ development and leads to poor fetal growth, a phenomenon called intrauterine growth restriction (IUGR)

  • Rat IUGR pups were modeled through prenatal exposure to synthetic glucocorticoid or through prenatal undernutrition

  • Another independent cohort of animals was used at PND21 for a glucose tolerance test (GTT) and the same cohort was used after one week of recovery at PND28 for an insulin tolerance test (ITT)

Read more

Summary

Introduction

Adverse fetal environment alters organ development and leads to poor fetal growth, a phenomenon called intrauterine growth restriction (IUGR). Precocious metabolic investigations would allow to better understand the genesis of late onset metabolic syndrome. To this aim, we combined physiological, morphometric and transcriptomic approaches, focusing on endocrine pancreas and adipose tissue development during the early postnatal period. Rat IUGR pups were modeled through prenatal exposure to synthetic glucocorticoid (dams infused with dexamethasone, DEX) or through prenatal undernutrition (restricted pair-fed dams, UN). This set of experiments should allow better understanding precocious physiopathological processes involved in metabolic programming

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call