Abstract
Early maternal deprivation (MD) is an animal model of neurodevelopmental stress associated with a variety of abnormalities during adulthood. The present study investigated specific behavioral, neurochemical and neurobiological parameters related to dopaminergic and serotonergic function in adult rats subjected to early life MD. Behavioral responses, including the reaction to novelty, the response to d-amphetamine (d-AMP) and the susceptibility to apomorphine (APO) were evaluated in adulthood. Dopamine (DA) and serotonin (5-HT) levels, their metabolites along with their turnover ratios were assessed in distinct rat brain regions. The impact of MD on DARPP-32 protein, D2 and 5-HT2A receptor expression was also estimated in the same brain regions during adulthood. Our results indicated that MD rats were more reactive to novelty behavior and more sensitive to dopaminergic agonists compared to controls. MD rats displayed elevated dopaminergic and serotonergic function in the amygdala and prefrontal cortex, whereas in the striatum only the dopaminergic activity was also increased. Interestingly, MD induced a region-dependent modulation of D2, 5-HT2A receptor and DARPP-32 protein expression. Our findings clearly indicated that early MD stress produces long term behavioral impairments and region-dependent modifications in various neurochemical and neurobiological indices of dopaminergic and serotonergic function in brain regions holding critical roles in the pathophysiology of central nervous system disorders.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.